Variability of the East Asian Mei-yu and Simulations and Prediction by the NCEP CFS

Hui Gao¹, S. Yang², A. Kumar², Z.-Z. Hu³, B. Huang³, Y. Li¹, and B. Jha²

¹China Meteorological Administration; ²NOAA Climate Prediction Center; ³COLA

(gaohui@cma.gov.cn)

What is the East Asia Mei-yu (EAMY)?
- Heavy rainfall in June-July over the Yangtze and Huaihe River valleys of China, Korea, and southern Japan (27.5-40°N/110-140°E; Meiyu in China, Changma in Korea, and Baiu in Japan)
- Remarkable interannual variability
- Strong relation with flood/drought events
- Low prediction skill

Skill of CFS simulations of the Asian summer monsoon
1) Simulating many major features of the Asian summer monsoon reasonably well (Yang et al. 2008; JCLI)
2) Capturing the most dominant modes of climate patterns (Liang et al. 2009; Clim. Dyn.)

Outlines
1. Datasets and model output
2. Simulations of climatological features and interannual variations of EAMY
4. Predictability of EAMY by the NCEP CFS
5. Summary

I. Observations and CFS Hindcast
- CMAP (Xie and Arkin 1996)
- NCEP/NCAR reanalysis (Kalnay et al. 1996)
- NOAA OISST analysis (Reynolds et al. 2002)
- Daily precipitation at 723 Chinese stations
- CFS hindcasts: LM1/LM2/LM3/LM4: 1/2/3/4-month lead with initial conditions of 19-23 May/Apr/Mar/Feb
- AMIP experiment

Analysis period: 1981 to 2004

II. Simulations

June-July correlation of EAMY with 850-hPa wind (arrows) and 500-hPa GPH (contours). (left: observation; right: simulation)

Monthly rainfall climatology for CMAP (left) and CFS (right).

20-day mean rainfall before, during and after the China Mei-yu in 2003 for both CMAP and CFS.

III. Case study

2003 Chinese Mei-yu: Strongest in recent 10 years; 28 people killed; Economic loss over 40 billion dollars.

Daily precipitation (mm per day) from 1 June to 31 July 2003 (bars) in China Mei-yu region. This curve measure the climatology. The period highlighted in observation denotes the China Mei-yu period issued by the China Meteorological Administration.

IV. Prediction

Correlation of CMAP-EAMY with CFS EAMY: (a) WPSH; (b) EASM (c) and (d) SST of different leads (see abscissa). Dashed lines represent the 95% confidence level (±4σ).

V. Summary
- CFS is highly skillful in simulating the climatological features of Mei-yu and related circulation patterns
- CFS reasonably simulates the interannual variations of EAMY and major influencing factors
- East Asian Mei-yu can be predicted by the CFS at LM1 with high confidence
- Ocean-Atmosphere coupling is important for Mei-yu simulation and prediction.